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We propose a stochastic dynamics for a neural network which accounts for the effects of the refractory
periods~absolute and relative! in the dynamics of a single neuron. The dynamics can be solved analytically in
an extremely diluted network. We found a very rich scenario that presents retrieval phases and a period
doubling route to chaos in the attractors of the overlap order parameter. Our model incorporates some char-
acteristics that make it biologically appealing, such as asymmetric synaptic efficacies, dilution of the synaptic
matrix, absolute and relative refractory periods, complex retrieval dynamics, and low levels of activity in the
retrieval regime.

PACS number~s!: 87.10.1e, 64.60.Ht

I. INTRODUCTION

Models of associative memory have been introduced and
intensively studied in recent years@1,2#. It has been found
that very simplified models, which preserve only a few basic
features of real brains, can display many interesting behav-
iors that resemble biological memories. These models con-
sist essentially of a network of two state units~formal neu-
rons! connected by symmetrical synapses. A simple
threshold dynamics makes the state of the neurons evolve in
time until the network reaches a stable configuration which is
identified with a memory. After having attained a reasonable
understanding of the properties and capabilities of the sim-
plest models, the efforts turned out to improve them towards
more biological plausibility. In this direction, several im-
provements have been made introducing, e.g.,analog neu-
rons that generalize the two states ones@3#, dilution and
asymmetryin the synaptic matrix@4–7#, distinguishing be-
tweenexcitatory and inhibitory synapses@8,9#, and consid-
ering the effects ofdynamical thresholds and refractory pe-
riods @10,11#. It was found that the memory properties of the
original models are robust, i.e., their capabilities as memory
storage machines were not only preserved in more general
conditions, but they also improved in several cases, e.g., with
very diluted synapses andlow activity patterns@4,12#.

In this simplified scenario a memory is understood as a
static phenomenon and very few attempts were made to-
wards modeling the much more complex picture of the dy-
namics of spikes and bursts that seem to be essential for a
realistic interpretation of the memory function@11#. Up to
now almost all works focused on one of these biological
ingredients; a satisfactory unified treatment is very difficult
to achieve because the models are very complex and gener-
ally untractable. In this paper we introduce and study ana-
lytically an attractor neural network model that incorporates

several of the previously mentioned characteristics.
Our main aim is to introduce and study the effects of

absolute and relative refractory periodsin the dynamics and
memory properties of an asymmetrically diluted model. It is
well known that after firing a spike, a neuron is unable to fire
again, irrespective of its afferent potential, for a period of
time of the order of 1–2 msec. This short period is known as
absolute refractory period. After that period the neuron can
fire again, but with a potential threshold higher than the usual
~resting! one. This second period is known asrelative refrac-
tory period. The presence of refractory periods will lead us
to discuss the process of retrieval and the role of attractors as
memories of the system. In this scenario, the retrieval is an
essentially dynamical phenomenon, in which fixed point at-
tractors are replaced by periodic or even chaotic orbits in
state space@13#. The paper is organized as follows: in Sec. II
we introduce and completely define the model; in Sec. III we
define some order parameters that characterize the retrieval
scenario and solve its dynamics in the limit of extreme dilu-
tion; in Sec. IV we discuss the behavior of the system in the
absence of fast noise~zero temperature!; and finally the con-
clusions are presented in Sec. V.

II. MODEL

In order to simulate the absolute and relative refractory
periods in the dynamics of a neural network withN neurons,
we define a three state neuron at every sitei ,
$Si50, 61, i51, . . . ,N%.

Only a neuron such thatSi(t)51 will be in the active
state, i.e., firing at timet. The other two states will represent
different states of a resting neuron. At zero temperature, the
absolute refractory periodwill be modeled requiring that a
neuron which is active@Si(t)51# at time t be at rest in the
zero state in the next time stept11 @Si(t11)50]. In the
following time stept12 it may flip toSi(t12)521 or to
the active state again, but in this case with a greater thresh-
old. This last process mimics therelative refractory period.

The complete stochastic refractory dynamics can be mod-
eled by the following set of probabilities for the different
states:
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P„si~ t !51…5
1

2
$11tanh„b@hi~ t !2hc#…%,

P„si~ t !521…5
1

2
$12tanh„b@hi~ t !1hc#…%, ~1!

P„si~ t !50…5
1

2
$tanh„b@hi~ t !1hc#…2tanh„b@hi~ t !2hc#…%.

b ~inverse temperature! represents a source of stochasticity
in the system of fast noise, as opposed to the static noise
generated by the stored patterns that tend to destabilize the
retrieval of a particular one.hc defines a range for the PSP
values in which the neuron is more likely to be in the zero
state. The probabilities defined by Eqs.~1! are shown in Fig.
1 for the caseb51, hc52. In the limit of zero temperature
the probabilities become step functions. The post-synaptic
potential~PSP! on neuroni at time t is defined by

hi~ t !5hi
0~ t !@12si~ t !/22si

2~ t !/2#1@si
2~ t !21#R. ~2!

This form of the PSP on neuroni deserves a detailed discus-
sion. hi

0 is equal to the PSP of the Hopfield model with
asymmetric dilution@1,4#.

hi
0~ t !5ci j(

j51

N

Ji j sj~ t !, ~3!

where the synaptic matrixJi j is defined by the Hebb rule,

Ji j5
1

N(
m51

p

j i
mj j

m . ~4!

The set of quenched variables$j i
m ,m51, . . . ,p% can take

the values61 with equal probability and represent a set of
p binary patterns memorized by the network. Note that with
this prescription half of the neurons are active in a pattern.
Theci j50,1 are random independent parameters responsible
for the dilution and asymmetry of the synaptic matrix, and
are chosen according to the following probability distribu-
tion:

P~ci j !5
C

N
d~ci j21!1S 12

C

ND d~ci j !, ~5!

whereC/N represents the mean connectivity per neuron.
Note that the PSP presents self-interaction terms, i.e.,

hi(t) depends on the state of the neuron at the same sitei .
This self-interaction is intended to produce a kind of self-
inhibition. Whenever neuroni is active at time t
@Si(t)51#, thenhi(t)50 and from Eqs.~1! we see that, at
zero temperature, the neuron will be at rest in the next time
step @Si(t11)50# or absolute refractory period. If
Si(t)50, thenhi(t)5hi

0(t)2R, with R being an activation
threshold. WhenSi(t)521 the PSP will behi(t)5hi

0(t).
Comparing the last two situations we see that, for a threshold
RÞ0, it is easier to flip to the active state from the21 state
than from the 0 one. This situation mimics the relative re-
fractory period and one can say that, although both states
Si50 andSi521 represent the neuron at rest, the zero state
is a deeper one.

In this way the model is completely defined, and we will
see in the next section how the dynamics can be solved ana-
lytically for some relevant quantities as overlaps and activ-
itities.

III. THE DYNAMICS: ANALYTICAL SOLUTION
IN THE LIMIT OF EXTREME DILUTION

First of all, we will introduce some suitable definitions of
relevant quantities. The overlap between the state of the net-
work at timet and themth pattern is defined as

mm~ t !5
1

N(
i

j i
m^ f „si~ t !…&, ~6!

where^•••& means both a thermal average and over an en-
semble of initial conditions att50 @for example, all initial
conditions having a fixed overlapm(o) over the first pattern#
and the functionf (s)5s21s21 maps the states 0 and21
to the21. This is because there is no difference between
these states for memory purposes. The fraction of neurons in
the zero state at timet is given by

FIG. 1. ProbabilitiesP(s) for the three neuron states as a func-
tion of the post-sinaptic potentials or local fieldsh for b51 and
hc52 ~see text!.
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q~ t !512
1

N(
i

^si
2~ t !&, ~7!

while the activity of the network~fraction of active neurons!
is

a~ t !5
1

2N(
i

@11^ f „si~ t !…&#. ~8!

We considered the case in which the stored memories are
uncorrelated (̂j i

mj i
n&5dmn) and the initial state of the net-

work has a macroscopic overlap with one of the patterns,
e.g., the first one, som1(0)5m, and has vanishing overlaps

with the p21 other memories, somm5O(1/AN) for mÞ1.
Following the method introduced by Derridaet al. @4#, we
were able to find a set of two coupled recurrence equations
for m andq at timet11 in terms of those quantities defined
at time t. Then the values ofm(t) and q(t) determine the
mean activitya(t). The full solution can be found in the
limit known as ‘‘extreme dilution’’ in whichC! lnN and the
strong correlations between the states of different neurons at
a given time are destroyed. In this limit it can be demostrated
that the PSPhi(t) has a Gaussian distribution whose mean
and variance can be calculated. Performing the limits
C→`, p→` ~with a[p/C5 const! after takingN→`, we
obtained the following set of equations:

m~ t11!5
1

2E Dx„tanh$b@m~12m!/22qR2hc1xAa#%1tanh$b@m~11m!/21qR1hc2xAa#%…, ~9!

q~ t11!5
1

4E Dx„tanh$b@m~12m!/22qR1hc1xAa#%2tanh$b@m~12m!/22qR2hc1xAa#%1tanh$b@m~11m!/21qR

1hc2xAa#%2tanh$b@m~11m!/21qR2hc2xAa#%…, ~10!

a~ t11!5
1

2
1
1

4E Dx„tanh$b@m~12m!/22qR2hc1xAa#%2tanh$b@m~11m!/21qR1hc2xAa#%…, ~11!

whereDx5e2x2/2/A2p.
In the next section we present and discuss the solutions of

these equations in some relevant cases.

IV. RESULTS FOR ZERO TEMPERATURE

In the limit of zero temperature, i.e.,b→` the equations
for m, q, anda reduce to

m~ t11!5
1

2 H erfFm~12m!/22qR2hc

A2a
G

1erfFm~11m!/21qR1hc

A2a
G J , ~12!

q~ t11!5
1

4 H erfFm~12m!/22qR1hc

A2a
G

2erfFm~12m!/22qR2hc

A2a
G

1erfFm~11m!/21qR1hc

A2a
G

2erfFm~11m!/21qR2hc

A2a
G J , ~13!

a~ t11!5
1

2
1
1

4 H erfFm~12m!/22qR2hc

A2a
G

2erfFm~11m!/21qR1hc

A2a
G J , ~14!

where erf(x) is the usual error function. We solved these
equations for different values of the parametersR, a, and
hc .

A. CaseR50

In this case the two resting states,Si50,21, will have the
same value for the PSP,hi5hi

0 . This means that for a neu-
ron at rest in any of the two possible states, the probability of
becoming activated in the next time step is the same for both
states. This can be interpreted as considering only the abso-
lute refractory period. Nevertheless, we will see that this case
will show an extremely rich variety of effects. ForR50,
Eqs. ~12!–~14! decouple and the dynamics for the overlap
m(t) is determined by the following one-dimensional map:

m~ t11!5F@m~ t !#

5
1

2 H erfFm~12m!/22hc

A2a
G

1erfFm~11m!/21hc

A2a
G J ~15!

while q(t) anda(t) are functions ofm(t).
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Equation ~15! has a fixed point solutionm50 for any
value of the parametersa andhc . This solution character-
izes a nonretrieval phase. The stability of them50 solution
is determined by

l[
]F~m!

]m
U
m50

5
1

A2pa
exp2hc

2/2a. ~16!

For l.1 (,1) them50 solution is unstable~stable!.
The borderline casel51 corresponds tohc5hc* (a)
5A2a ln(2pa) ~see Fig. 2!. For hc,hc* them50 solution
becomes unstable and a fixed point solution withm5m*
Þ0 appears continuously. As can be seen in Fig. 2, for fixed

hc and asa decreases, them50 solution presents a reen-
trance at small values ofa. This surprising behavior may
signal, as will be discussed soon, that the dynamics is more
complex than one presenting only fixed point attractors. An-
other fact that can be gathered from Fig. 2 is that the param-
eter hc , which determines the weight of theSi50 state in
the dynamics~see Fig. 1!, must be kept small (hc!1) in
order to mantain stability of themÞ0 solution.

In Fig. 3 we show them(a) curves for several values of
hc . We first note that, as a direct consequence of the abso-
lute refractory period, the retrieval is not perfect (m,1) for
any value ofa. In spite of this, the system retrieves the
stored patterns reasonably well, and the critical storage ca-
pacity for typical values ofhc is comparable to that of the
Hopfield model (ac;0.14). Second, ashc increases, the
fixed point retrieval solutions are destabilized, an effect that

FIG. 2. Critical curves in the planehc2a separating the regions
with m50 ~upper regions! from themÞ0 solutions~lower regions!
for several values of the activation thresholdR.

FIG. 3. Overlap curves in the region of fixed point attractors as
a function of the storage parameter for several values ofhc and
R50.

FIG. 4. Period doubling route to chaos for the attractors of the
overlap order parameter as a function of the storage capacitya for
a typical value ofhc .

FIG. 5. Mean values of the order parametersm and q in the
corresponding attractors of Fig. 4.
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is dramatic already for values ofhc;0.2. Finally it can be
noted that the curves do not continue down toa50. This
behavior could be expected as a consequence of the reen-
trance of them50 solution. Nevertheless we found that,
before the zero solution reenters, themÞ0 fixed point solu-
tion loses stability, and a period doubling route to chaos
appears asa decreases. The chaotic behavior was verified by
a numerical calculation of the Liapunov exponent.

In Fig. 4 we show the attractor as a function ofa for a
typical value ofhc . Note that this kind of attractor still per-
mits the system to recognize the patterns, as can be seen in

Fig. 5, where we plotted the temporal mean value of the
order parameters in the attractors^m& and ^q&. Even in the
regions corresponding to periodic cycles and chaos the mean
value of the overlap is of the same order of magnitude as in
the fixed point region (m'0.7). Consequently, although the
system never stabilizes on a pattern, it evolves jumping be-
tween states that stay near one of them. In this sense it can be
said that the systemdynamically retrievesthe information
stored in the patterns. It is worth noting that, even in the
region of fixed point attractors for the overlap, the micro-
scopic dynamics of the network statesneverreaches a fixed
point as a consequence of the absolute refractory period
which forces an active neuron to be at rest in the next time
interval.

In Fig. 6 we present the complete phase diagram for
R50. Compare the scales of the axes with those of Fig. 2.
For a.a1'0.01 the system presents a retrieval region with
fixed point attractors withmÞ0, which disappears continu-
ously athc5hc* (a) . For a,a1 there is a retrieval region
(^m&Þ0) with fixed points, cycles, and chaos. These attrac-
tors may coexist in some regions with them50 fixed point
attractor. In other words, fora andhc fixed, the system is
driven into one of the different attractors depending on the
initial value ofm. The retrieval region was determined by
the condition^m&Þ0 in attractors whenm(0)51. At the
dashed line fora,a1 in Fig. 6, ^m& changes discontinu-
ously from ^m&50 to ^m&Þ0. For hc50 the system pre-
sents a retrieval phase with cycles of period two for
0,a,a1 (a1'0.0075) and fixed points fora1,a,ac
with ac51/2p and it undergoes a continuous transition to
m50 ata5ac .

In Fig. 7 the curves showing mean activity vs alpha are
plotted in the region of fixed point dynamics for several val-
ues ofhc . As expected, the activity of the network is low-
ered ashc increases, an effect similar to that observed for the
overlap curves. Interestingly, the activity stays below 0.5 for
values ofa in the retrieval region. This characteristic is bio-
logically appealing, although in biological neural networks

FIG. 6. Different dynamical regimes of the overlap order param-
eterm in the hc2a plane, forR50, showing regions with fixed
point solutions, 2 and 4 cycles and chaos. Cycles of period greater
than 4, although present in the exact dynamics, are not shown due
to the scale of the plot. A region of coexistence of solutions is also
shown~see text!.

FIG. 7. Curves showing mean activity as a function of the stor-
age parameter in the region of fixed point solutions for several
values ofhc andR50.

FIG. 8. Time evolution of the mean activity in the chaotic at-
tractor fora50.001,hc50.05, andR50.
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the activity levels are much lower. This behavior has to be
compared to that of the Hopfield model where the mean
activity is 0.5. In our model, although the patterns stored
have 50% of neurons active, the overall activity is lower due
to the effect of the refractory periods in the dynamics. Figure
8 shows the evolution in time of the activity for a particular
choice ofhc anda inside the chaotic attractor. It is possible
to distinguish three stages: when the instantaneous activity is
high ('0.5), in the next time step it falls down to a very low
value ('0.05) and then it raises to a value around 0.25 sig-
naling the presence of an intermediate~refractory! period.

Finally, the same rich scenario with retrieval cyclic and
chaotic trajectories persists at low temperature. The observed
behavior at finite temperature is qualitatively similar to the
T50 one, i.e., the complex dynamics of themacroscopic
parameters introduced by the refractory periods is robust to
small amounts of noise. For higher values of the temperature
the retrieval region shrinks until it disappears for some criti-
cal temperature.

B. CaseRÞ0

In this case the full coupled maps given by Eqs.~12! and
~13! must be considered. Notice that the order parameters are
not independent. It can be seen from the definitions~6! and
~7! that for a random patternj i

m , mm(t) andq(t) satisfy the
relationm1q<1, which is preserved by the map defined by
Eqs. ~9! and ~10!. Therefore, the initial condition
„m(0),q(0)… must be chosen within such a constraint.

The general behavior of the system forRÞ0 is qualita-
tively similar to the caseR50. Figure 2 shows the retrieval
boundaries for typical values ofR. It can be seen that the
retrieval region shrinks for increasing values ofR. All curves
end ata5ac51/2p for hc50. The region with cycles and
chaos with^m&Þ0 also shrinks forRÞ0; cycles of period
two betweenm50 andmÞ0 can also be present for rela-
tively high values ofR.0.2 and small values ofa,0.05.
The curves for the overlap and activity versusa have the
same aspect as those forR50, although quantitavely they
show a deterioration of the retrieval capacity and even lower
values for the mean activity. The main consequence of hav-
ing RÞ0 is a greater difficulty for single neurons to become
activated giving lower values for the overlap.

V. CONCLUSIONS

In this paper we have introduced a model for an attractor
neural network which incorporates some realistic features
observed in biological neurons, namely, asymmetric dilution
of the synapses and absolute and relative refractory periods.
Although these elements have already been studied indepen-

dently, to our knowledge this is the first time they are con-
sidered all together in a unique model. The main effect of
these elements, when compared, for example, with the
Hopfield model, is to prevent the system from reaching a
thermodynamical equilibrium regime; they produce an es-
sentially dynamical system. In particular, it is well known
that asymmetric dilutions can yield tomicroscopicchaotic
trajectories in the phase space, as was verified for both Ising-
like neurons@4# and continuous neurons@7#. However, such
trajectories correspond always to a fixed point attractor for
themacroscopicorder parameter. By considering a limit of
extreme dilution of synapses we were able to solve the dy-
namic equations for the order parameters of the model, from
which we were able to study its retrieval properties. Our
main result is to show that the presence of both asymmetric
dilution and refractory periods can lead to an even more
complex dynamical behavior with periodic cycles and cha-
otic trajectories, not only in the phase space, but also for the
order parameters. We showed that, in spite of the complexity
of the dynamics, the system is still able todynamically rec-
ognizethe stored patterns. In the retrieval region the micro-
scopic states of the network never reach a fixed point but
always evolve near a pattern. In this case the parametersm
andq can also vary chaotically in such a way that the tem-
poral averages on the attractor are sufficiently high to iden-
tify a retrieval process. The mean overlap is always distinctly
higher than the overall mean activity. A similar kind of be-
havior was reported in a model which considered excitatory
neurons as responsible for the retrieval process@9#. Another
biologically appealing characteristic induced by the refrac-
tory periods is that the mean activity is lower than that of the
stored patterns in the retrieval region.

For small enough values ofhc we found a critical storage
capacity ac'0.16 that is essentially independent of the
strength of the relative refractory periodR. This valueac
may be compared with those obtained for the fully connected
Hopfield model@1# (ac'0.14) and for its extreme diluted
version@4# (ac'0.66).

It would be interesting to extend this model by consider-
ing biased patterns and study the effects on retrieval and
activity.
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